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ABSTRACT. We describe the algorithms which allowed us to show that all the in- 
tegers congruent to 50 modulo 80 that lie in the interval (0.3651 x 1012, 1.0400x 
1012) are sums of five biquadrates, and that all the integers congruent to 67 
modulo 80 that lie in the interval (0.3651 x 1012, 9.5956 x 1018) are sums 
of seven biquadrates. We finally describe some ascent lemmas that we use to 
deduce from the previous results that every integer not exceeding 10448 is a 
sum of 19 biquadrates. 

1. INTRODUCTION 

In the first edition of his Meditationes Algebraicce in 1770, Waring states 
that every natural integer is a sum of 19 biquadrates (fourth powers of natural 
numbers). It seems obvious that he had no proof of this fact and that he merely 
observed that every small integer is the sum of 19 biquadrates, some of them 
(79 or 479, for example) requiring as much as 19 summands. The actual limit 
of his computations is not known. 

Hardy and Littlewood [8] opened the road to the solution of Waring's prob- 
lem by showing in 1925 that there exists an effectively computable constant A 
such that every integer larger than A is a sum of 19 biquadrates. In 1986, Bala- 
subramanian, Deshouillers, and Dress showed that 10367 is an admissible value 
for A; the result is announced in [1, 2] and the complete proof is published in 
[5-7]. 

The same notes [1, 2] contain a sketch of the computations performed to 
show that every integer smaller than 10378 is a sum of 19 biquadrates. 

Following the same general line, we have redone these computations, and, 
thanks to the improvement in our computing facilities, we could increase the 
range of our results. In this article, we give a detailed account of how we proved 
the following 

Theorem. Every positive integer N less than 10448 is the sum of 19 biquadrates. 

Besides the result of [1], the best previous bound was 10233.5, obtained by 
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Thomas in 1974 (cf. [10] as well as [3] for a comment on that article). 

2. GENERAL SCHEME OF THE PROOF 

We shall use the notation B, to describe an integer which is the sum of 
s biquadrates; thus "im is B, " means that the integer m is the sum of s 
biquadrates. 

The principle of the proof is traditional: we first show by a numerical verifi- 
cation that all (or almost all, with a very limited number of exceptions) integers 
in some finite arithmetical progressions are Bh; we then deduce that all inte- 
gers in a (much larger) interval are B19 by a (19 - h)-fold application of ascent 
arguments. The ascent (or descent) arguments involved are more or less refined 
versions of the greedy algorithm, which consists in looking for representations 
involving the largest possible biquadrate. 

The numerical evidence strongly suggests that the proportion of B5's in any 
arithmetical progression 16n + 1, 2, 3, 4, or 5 should tend to 1 when the length 
of the progression tends to infinity; theoretical considerations even support the 
conjecture that any sufficiently large integer in one of these progressions is a B5, 
but exceptions do exist rather far up (to 1015 ?). In order to apply the greedy 
algorithm, it is essential to be equipped with very long arithmetic progressions 
containing only B5's (with no exception at all, although dealing with very few 
exceptions is manageable, but costly, as we already showed in [1]). 

In order to make a compromise between the length and the size of the needed 
arithmetic progression full of B5's, we restricted ourselves to an arithmetic 
progression of integers congruent to 50 modulo 80. Our choice is discussed in 
the third section. More precisely, we prove the following 

Proposition 1. Every integer lying in the interval 

(11, 12] = (365 093 023 490, 1 040 000 000 000] 
which is congruent to 50 modulo 80 is a B5 . 

This result improves on our previous one in that it contains a much larger 
interval in which we prove that there is no exception; it improves on Thomas' 
in that respect and also in that it concerns B5's (and not B6's), leaving one 
more step available in the ascent process. A further improvement on [8] is that 
we jump from B5's to B7's by a single ascent with B2's instead of two ascents 
with B 's. The key ingredient is the following 

Proposition 2. There exists a sequence of B2 integers (gj) congruent to 17 mod- 
ulo 80, which contains 17 and an element larger than 9.595669026 x 1018, such 
that all consecutive differences g1+l - gj are at most equal to 3 = 12 - 11 
674 906 976 510. 

The standard greedy algorithm readily leads from Propositions 1 and 2 to 
the following 

Corollary. Every integer lying in the interval 

(mIl, M2] = (365093023490, 9.59566939 x 1018] 

and congruent to 17 modulo 80 is a B7. 

One should notice that a standard two-step ascent would lead to 1.04 ... x 1 018 
instead of 9.59 ... x 1018. 
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In the last section, we show how it is possible to choose 12 ascent steps 
managing congruences modulo 16 and 5, in order to deduce from the above 
corollary that every integer between 1012 and 10448 which is not divisible by 
16 is a BI9 . It has long been known that every integer less than 1012 is a B19, 
so that every integer at most equal to 10448 which is not divisible by 16 is a 
Bl9. Since 16 is a biquadrate, and since the product of two biquadrates is a 
biquadrate, it is obvious that every integer at most equal to 10448 is a Bl9, 
which is our main theorem. 

3. HEURISTICS ON SUMS OF BIQUADRATES 

Since we need arithmetic progressions which are rich in sums of biquadrates, 
we restrict our attention to those moduli for which biquadrates are badly dis- 
tributed. Modulo 16, every biquadrate is congruent to 0 or 1, and the so- 
lutions of x4 = m (mod 2c) for a > 5 are simply lifted from those of 
x4 = m (mod 16). For an odd prime p, there are L= nonzero biquadratic 

_ ~~~~~~~~~~~~~~~~4 
residues mod p when p is congruent to 1 modulo 4, and j- otherwise; 
the solutions of x4 = m (modpa) for a > 2 are simply lifted from those 
of x4 =m (modp). These considerations, in combination with practical 
ones, which require that our modulus should not be too large, led us to choose 
16 x 5 = 80. 

It is easy to check that m4 is congruent to 0 (resp. 1, 16, or 65) modulo 80 if 
and only if m is congruent to 0 (resp. (? 1 or ?3), (?2 or ?4), or 5) modulo 
10. We thus get Table 1. 

TABLE I 

remainder frequency 
modulo 80 x 10 

1 4 

16 4 

0 1 

65 1 

Table 2 (next page) follows from Table 1, and gives the remainders modulo 
80 which are B2, as well as the ordered representations (e.g., 17 can be realized 
as 1 + 16 or 16 + 1) and the frequency with which a B2 is congruent to the 
given remainders modulo 80. 

The highest frequency is attained for the remainder 17, and this is why we 
chose it in the B2 ascent process (cf. Proposition 2). 

With slightly more work, we can construct Table 3 (next page), associated 
with the B5's. It turns out from this table that the richest arithmetic progressions 
for our purpose are 80n + 19 and 80n + 34, as already noticed by Thomas. 

However, in order to reduce the complexity of the program, that is, both the 
human work and the risk of error, we chose one of the richest representations 
according to Table 4 (see p. 199). 

The choice between 35 and 50 was purely random (and it may turn out that 35 
would have been a slightly better choice). A further advantage of either choice 
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TABLE 2 

remainder ordered frequency 
modulo 80 representations x 100 

17 1+16 32 

1 0+1 16+65 16 

2 1+1 16 

32 16 + 16 16 

16 0 + 16 8 

66 1 + 65 8 

65 0+65 2 

0 0+0 1 

50 65+65 1 

TABLE 3 

remainder ordered frequency 
modulo 80 representations x 105 

19 0+ 1 + 1 + I + 16 1 + 1 + 16 + 16 + 65 12800 

34 0+ 1 + 1 + 16 + 16 1 + 16 + 16 + 16 + 65 12800 

35 0+0+65+65+65 1 + 1 + 1 + 16+ 16 10250 

50 0+0+0+65+65 1 + I + 16+ 16+ 16 10250 

3 0+0+ 1 + 1 + 1 0+ 1 + 1 + 16+65 1 + 16+ 16+65+65 6400 

4 0+1?1?1+1 1?1+1+16+65 6400 

18 0+0+ 1 + 1 + 16 0+ 1 + 16+ 16+65 16+ 16+ 16+65+65 6400 

49 0+ I + 16+ 16+ 16 16+ 16+ 16+ 16+65 6400 

20 0+65+65+65+65 1 + 1 + 1 + I + 16 5 125 

65 0+0+0+0+65 1 + 16+ 16+ 16+ 16 5 125 

is that it is then easy to check whether an integer which has no representation 
of the selected type is a B5 or not: N is a B5 if and only if N is divisible by 
625 = 54 and N/625 is itself a B5. Since N is at most 1.04 x 1012, N/625 
is at most 1.664 x 109, and it is easy to check directly whether such a "small" 
number is a B5 . 

As we already mentioned, biquadrates are badly distributed in arithmetic 
progressions modulo 13, since 13 is a prime congruent to 1 modulo 4. This 
uneven distribution is reflected in that of the B,'s for small s. For example, 
the asymptotic frequency of the B5's in progressions modulo 13 is given in 
Table 5. This will be referred to in ?5. 
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TABLE 4 

remainder one ordered frequency 
modulo 80 representation x 105 

35 1+1+1+16+16 10240 

50 1+1+16+16+16 10240 

19 1+1+16+16+65 7680 

34 0+1+1+16+16 7680 

19 0+1+1+1+16 5120 

34 1 + 16 + 16 + 16 + 65 5 120 

TABLE 5 

remainder frequency 
modulo 13 of the B5's 

0 0.0517 

1 0.0707 

2 0.0773 

3 0.0707 

4 0.1008 

5 0.0773 

6 0.0773 

7 0.0672 

8 0.0672 

9 0.0707 

10 0.1008 

11 0.0672 

12 0.1008 

4. ALGORITHMS 

4.1. On the B5's congruent to 50 modulo 80. Our aim is to show how we proved 
Proposition 1. As we explained in the previous section, we checked whether an 
integer 80n + 50 with n < 1.3 x 1010 is a B5 with summands congruent to 
1, 1, 16, 16, 16 modulo 50. When this was not the case, we checked whether 
80n + 50 was divisible by 625. Since this never happened, there is no point in 
describing the treatment which would have been adequate. 

We start by constructing all the sums a2 of B2's which are congruent to 2 
modulo 80, as well as the sums a3 of B3's which are congruent to 48 modulo 
80. Since we consider integers which are less than 1.04 x 1012, either set has 
less than 1.1 x 107 elements, which is manageable. However, the file of the 
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sums {a2} + {a3} would require about 1 500 megabytes, which is more than 
our available disk space. 

To overcome this difficulty, we break the files {a2} and {a3 } into arith- 
metic progressions to a suitable modulus M: distributing {a2} and {a3 } in 
arithmetic progressions is straightforward and costs almost no time; in order to 
recover all the sums a2 + a3 in a given progression modulo M with remainder 
r, it is enough to consider the M pairs (r', r") with r' + r" r (mod M) 
and for each such pair to sum the a2's congruent to r' modulo M and the 
a3's congruent to r" modulo M. Let us consider the time and space costs in 
this process, under the assumption that M is a prime number congruent to 3 
modulo 4, since in this case the sets {a2} and {a3} are rather well distributed 
modulo M: 

- the total time is almost unchanged: we have to perform M x M times 
a sequence of operations, each of which needs about 1/M2 less time 
than the initial full sequence; 

- on the other hand, the needed space in memory is simply divided by 
M. 

We chose M = 43, and the needed memory was reduced to 38 megabytes. 
We should notice here that we indeed performed a further block reduction, so 
that the sequences we actually handled were stored on blocks of length at most 
eight megabytes, although we are not going to describe that minor aspect any 
further. 

We worked with two algorithms: 
1. Computation of the biquadrates, then of the sets {a2} and {a3}; those 

sets are ordered modulo 43, and stored into 86 files: each of the first 43 contains 
the list of those integers k such that 80(43k+i)+2 is in {a2}, for 0 < i < 42, 
each of the remaining 43 files contains the list of those integers k such that 
80(43k + i) + 48 is in {a3}, for 0 < i < 42. 

2. Search (between two given bounds) for the exceptional n's such that 
80n + 50 is not in {a2} + {a3}, by means of two loops: the external one is 
indexed by the remainder r modulo 43 of n. The internal one is indexed by 
the pairs (r', r") such that r' + r" _ r (mod 43). Furthermore, if an integer 
80n+50 is not recognized as a B5 , it is checked whether 80n+50 is divisible by 
625, in which case (80n + 50)/625 is declared as a "pre-exception" in order to 
be analyzed by ad hoc methods. (As we already mentioned, we do not describe 
these methods, since no large pre-exception was encountered.) 

Programs were written in the C language, and run on a SUN workstation. 
We briefly describe the algorithms underlying those programs. 

Algorithm la: construction of the 43 files for {a2}. 
procedure main 

1. computation of biquadrates n4 = 1 (mod 80), decomposition n4 - 

80(43k + r) + 1, and storage of k and r in two arrays 
2. computation through a double loop of the " k-values" of the sums of 

two elements in {a2}, and immediate storage in the one of the first 43 
files which is associated with the " r-value" of the sum 

3. loop on the 43 files 
3.1. call of procedure sort 
3.2. rewriting of each of the 43 sorted files 

4. end 
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procedure sort 
writing a file of integers in increasing order, and elimination of multiple 
values 

Algorithm lb: construction of the 43 files for {a3} . Similar to Algorithm la. 

The running time of the respective programs was about one hour with our 
numerical values. 

Algorithm 2: search for the exceptions (- 50 (mod 80) and not B5). 
procedure main 

1. input the limits for the search, ml and m2 
2. reduction step: ni = [mi/80], ki = [ni/43] (i = 1, 2) 
3. loop from r= 0 to r= 42 

3.1. store zeros in the array that will store the information (bit #j will 
be 1 (or 0) according as the checked integer is (or is not) a sum 
a2 + a3) 

3.2. loop from r' = 0 to r' = 42 
call procedure test (r', r") 

3.3. detect pre-exceptions 
3.3.1. detect indices corresponding to pre-exceptions 
3.3.2. convert those indices into the values of the pre-exceptions 

3.4. detect exceptions and pre-exceptions 
3.4.1. if a pre-exception is not divisible by 625, post it as an 
exception 
3.4.2. otherwise, divide it by 625 and post it as a possible exception 

4. end 
procedure test (ri, r2) 

1. read the file containing the " k-values" for a2's with r-value r1 
2. read the file containing the " k-values" for a3's with r-value r2 
3. double loop for writing sums a2 +a3 with r-value (r1, r2) 

3.1. computation of the " k-value" of the sum a2 + a3 

3.2. store 1 in the corresponding bit 
4. return 

Running the respective program (written in C) on our SUN station took about 
1 000 hours. 

4.2. A sequence of B2's congruent to 17 modulo 80 with small differences. The 
third program is used to produce a sequence of B2's satisfying the conditions of 
Proposition 2. It was written in C and run on a SUN workstation. Its principle 
is fairly elementary: starting from go = 17, a sequence of gj's is built by 
induction according to the following algorithm: 

- for a given gj, one looks for an integer m between gj and gj + J 
which is a B2 and congruent to 17 modulo 80; the greedy algorithm is 
used (searching for an m as close to gj + a as possible), which is very 
fast; 

- in case of success, one lets gj+1 be equal to m, and one goes back to 
the beginning; 



202 J.-M. DESHOUILLERS AND F. DRESS 

- otherwise, execution is stopped. (For 3 = 0.674907 x 1012, the last gj 
found has the value 9.59566902 x 1018 given in Proposition 2.) 

A first modification is that we did not start with the value a = 0.6749 x 1012, 
but we determined the successive jumps of the function y = f(x) defined by 

f(x) = max{ylaj < y =? aj - aj-1 < x}, 

where (cj) is the increasing sequence of B2 numbers which are congruent to 
17 mod 80. The function f is a nondecreasing step function characterized by 
the sequence (6k, Yk) defined by f(x) = Yk for Jk < X < k+1 - 

The second modification reduces the computing time by a factor 10 (from 
2 000 hours to 200, which is crucial). Instead of computing the elements of 
the sequence (cj) one by one, we compute all the B2's in a given interval 
[gj, gj + D] (where D is about 1003 to 1 0003), and instead of storing and 
sorting them, we just indicate their existence in an interval of length 3/t, by 
writing " 1" in a box associated with the interval. These boxes are then looked at: 
if there is no consecutive block of (t - 2) boxes containing no " 1 ", then we can 
go to the beginning of the algorithm, with gj + DJ instead of gj. Otherwise, 
a greedy search is used to determine gj+1 . 

We briefly describe the structure of the algorithm underlying this last pro- 
gram. 

Algorithm 3: generating a sequence of B2 17 (mod 80). 
procedure main 

1. input initial g and delta 
2. infinite loop 

2.1. boxflag = 1 
2.2. loop while boxflag = 1 

2.2.1. all boxes are initialized with 0 
2.2.2. rim = g + D * delta 
2.2.3. double loop on 2a not divisible by 5, and 2b + 1 not 
divisible by 5, under the condition g < s = (2a)4+(2b+1)4 < rin; 
the corresponding box is set to "1" 
2.2.4. search loop on the boxes: if there exists a block of t - 2 
consecutive boxes containing only "0", then boxflag = 0 

2.3. continuation (in case boxflag = 0) 
2.4. g = g + j(delta/t), where j is the index of the box preceding 

the block 
2.5. call procedure greedysearch(g, delta) 

procedure greedysearch(g, delta) 
1. double loop on 2a not divisible by 5, and 2b + 1 not divisible by 5, 

under the condition s = (2a)4 + (2b + 1)4 < g 
if one finds s < g + delta 

end of the loop; g = s; end of the procedure 
otherwise 

m = g + (delta/2); call procedure followdelta (m); return 

procedure followdelta (m) 

1. exhaustive search to find the largest mis = (2a)4 + (2b + 1)4 < m 
2. exhaustive search to find the smallest mas = (2a)4 + (2b + 1)4 > m 
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3. delta=mas-mis; g=mas 
4. print mis, mas, delta 

Coding this algorithm is straightforward. 

5. NUMERICAL RESULTS 

We present the last few values we found for numbers which are congruent 
to 50 mod 80, but not B5. Although our main theorem requires only the 
knowledge of a large block without exceptions, we provide those values for the 
following reasons: 

- the first one is to provide data that can be checked if our computations are 
redone sometime; 

- the second is to draw the reader's attention to the following facts: 
* the large gap between the penultimate and the last observed exceptions, 
* all 25 exceptions in the list, except 106 813 602 930 and 128 078 473 090, 

are divisible by 13 (a result to be compared with Table 5 in ?3). 
All the numbers congruent to 50 modulo 80 which lie in [100 000 000 000, 

1 040 000 000 000] are B5, with the following exceptions: 
102 380 819 970 

106016815970 106065556610 106813602930 108317800370 
111201089090 114255831 170 114731 128850 117963507090 
118262419730 126344288850 128061547250 128078473090 
129647053250 132493652850 136680665810 139488024130 
139598700930 155439625250 160641941330 172999456370 
191532446690 192714742610 206740959490 365093023490 

We provide the reader with an extended list of pairs (3k, Yk) in Table 6. 
This table suggests that Yk increases at a slightly slower rate than 35. 

6. THE DESCENT METHOD; END OF THE PROOF 

Let N be an integer less than 10448. In order to show that N is a Bl9, it is 
enough to show that N - ([N1!4])4 is a B18, and the binomial expansion tells 
us that it is enough to know that any integer less than 4N3/4 = 10336.6 is a B18. 
We see the power in the way the exponent is decreasing: with a few iterations, 
we see that it would be enough to show that any integer less than 1016.53 is a 
B7. This is, however, not true for two reasons: the first one is that B7's are 
located only in certain arithmetical progressions, and the second is that even 
when those arithmetical conditions are fulfilled, it is not possible to represent 
small integers as B7's. The second obstruction is easy to overcome by starting 
with a long arithmetical progression, like the one provided by the corollary in 
?2. The first one is a bit more cumbersome, and in order to master it, we have 
to control congruence conditions in the descent process. 

6.1. The congruence descent. Starting with an integer N, we have to find 
twelve biquadrates b1, b2, ... , b12 so that N - b, - - b12 is congruent to 

67 modulo 80. 
The first case deals with integers N congruent to 3, 4, 5, .5. , 15 modulo 

16. Since all biquadrates are congruent to 0 or 1 modulo 5 and to 0 or 1 mod- 
ulo 16, there is no difficulty in finding such a sequence of bi's. It is even worth 
noticing that among four consecutive biquadrates, one at least is congruent to 1 
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TABLE 6. List of pairs (3k Yk) for Yk between 1017 and 1.7 x 1019 

6k _ Yk 

0.0778902x 1012 0.100407976x 1018 

0.081 696 8 x 1012 0.155 422 263 x 1018 
0.083 603 6 x 1012 0.162 580 587 x 1018 

0.083 765 9 x 1012 0.191 777 160 x 1018 

0.088 131 8 x 1012 0.198 809 922 x 1018 

0.090 539 5 x 1012 0.213 490 334 x 1018 

0.0908959x 1012 0.218150754x 1018 

0.099 216 6 x 1012 0.219 814 867 x 1018 

0.1015088x 1012 0.259162611 x 1018 

0.106 282 8 x 1012 0.259 842 504 x 1018 
0.1105354 x 1012 0.261322 155 x 1018 

0.111 865 3 x 1012 0.265 137 124 x 1018 

0.1134284 x 1012 0.295 537 884 x 1018 

0.1184876 x 1012 0.314 854 500 x 1018 

0.1516972x 1012 0.326498802x 1018 

0.1552426 x 1012 0.556745 800 x 1018 

0.1555850x 1012 0.576318161 x 1018 

0.1755814x 1012 0.633794988x 1018 
0.186 619 3x 1012 0.646 110 378 x 1018 
0.1984802 x 1012 0.663 736 038 x 1018 

0.202 209 4 x 1012 0.838 097 027 x 1018 

0.246 588 5 x 1012 0.899 789 363 x 1018 

0.3502304 x 1012 0.991660740 x 1018 

0.3517312 x 1012 2.284 134282 x 1018 

0.3805102 x 1012 2.687993301 x 1018 

0.394 274 7 x 1012 3.000 022 126 x 1018 

0.4372502 x 1012 3.191452333 x 1018 

0.441 527 2 x 1012 3.200 070 443 x 1018 

0.442 210 1 x 1012 4.132 544 539 x 1018 

0.445 055 0 x 1012 4.605 906 871 x 1018 

0.4703159 x 1012 4.610024415 x 1018 

0.550 492 8 x 1012 4.665 433 340 x 1018 

0.613 988 6 x 1012 5.289 622 157 x 1018 

0.633 765 5 x 1012 7.004 516 571 x 1018 

0.651 392 3 x 1012 7.716 762 811 x 1018 
0.660 149 7 x 1012 8.995 568 346 x 1018 

0.668 582 7 x 1012 9.184 529 357 x 1018 

0.683 890 4 x 1012 9.595 669 027 x 1018 
0.712 808 3 x 1012 9.745 398 774 x 1018 

0.834 506 7 x 1012 9.930 335 037 x 1018 

0.857 042 7 x 1012 10.432 599 438 x 1018 

0.868568 1 x 1012 13.069930352 x 1018 

0.8703898x 1012 13.261088133x 1018 

0.9126968 x 1012 15.974961266x 1018 

0.9630499x 1012 16.323537190x 1018 

1.076 902 9 x 1012 16.908 631798 x 1018 

limit of the search: 17.000 000000 x 1018 
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mod 5 and to 1 mod 16, and one at least is congruent to 1 mod 5 and to 0 mod 
16: when bi is chosen according to this principle, we say that we perform an 
ith step of S-type in the descent. In a similar way, steps of T-type refer to the 
fact that among ten consecutive biquadrates, one at least is congruent to 0 mod 
5 and to 0 mod 16, and one at least is congruent to 0 mod 5 and to 1 mod 16. 

One readily sees that it is always possible to go down from N congruent to 
3, 4, 5, ..., 15 modulo 16, to an integer congruent to 67 modulo 80, by using 
12 steps, with at most four steps of T-type at the beginning, the remaining steps 
being of S-type. The worst cases concern integers N which are congruent to 
15 and 35 modulo 80: there is no other choice modulo 16 than taking only 
biquadrates congruent to 1 in the first instance and 0 in the second. Modulo 
5, we want to reduce the number of T-type steps; but four are needed, because 
bi + . + b12 has to be congruent to 3 modulo 5 in both instances. 

The second case deals with integers N congruent to 0 modulo 16; it turns out 
that this case can be completely ignored: it is enough to prove that all integers 
up to X which are not congruent to 0 modulo 16 are B19, in order to show 
that all integers up to X are B19: this is due to the fact that 16 = 24 and that 
16B, is a B, . 

The third case, dealing with integers N congruent to 1 or 2 modulo 16, might 
seem hopeless if we attack it with the argument of the first case. Fortunately, 
after one or two steps of S-type (or even simpler), we encounter an integer 
congruent to 0 modulo 16, which we may divide by 16. We must however 
ensure that the quotient we get will entitle us to end the descent as in the 
first case: this will be achieved if we insure the quotient to be congruent to 
3, 4,5 , ... , 12 or 13 modulo 16, since only ten steps in the descent are still at 
our disposal if N is congruent to 2 modulo 16. The following lemma explains 
how we can deal with this step: its proof is just a direct computation. 

Lemma 1. Let m be an integer which is congruent to 1 modulo 16. Among any 
set of five consecutive odd integers, at least two of them (a, and a2, say) have 
the property that (m - a4)/16 is an integer congruent to 3, 4,..., 12 or 13 
modulo 16, for i= 1 and 2. 

A further advantage of this lemma is that it also permits us to manage con- 
gruence modulo 5 in this step: one of a4 or a4 is congruent to 1 modulo 5, 
so that the corresponding (m - a4)/ 16 is congruent to m - 1 modulo 5. A 
descent step using this principle will be described as belonging to the U-type. 

If N is congruent to 1 modulo 16, one can reduce it to an integer congruent 
to 67 modulo 80 by starting with a U-type step, followed by 11 steps consisting 
of at most four T-type steps preceding a sequence of S-type steps. 

If N is congruent to 2 modulo 16, the corresponding sequence is an S- or 
a T-type step, followed by a U-type step, followed by ten steps consisting of at 
most three T-type steps preceding a sequence of S-type steps. 

6.2. The real ascent. We give two lemmas which permit us to compute the 
length of an arithmetical progression containing B,+1's, when one knows an 
arithmetical progression containing only B,'s. 

Lemma 2. Let A, s be positive integers, and Ds be a real number (larger than 
40 000). If we assume that every integer in the interval [A, A + DS) which is 
congruent to r modulo 80 is a Bs, then every integer in the interval [A, A+Ds+1) 
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which is congruent to r + 3 modulo 80 is a B,+I, with the following values: 

Ds+, = Ds + (DSIC)4/3 

and 

3= I or 16, c= 16 (S-type ascent); 
3=0or65, c=40 (T-type ascent). 

Proof. This result is a slight variation of the standard greedy algorithm. Let h 
denote the number 4 (resp. 10) in the case of the S-type (resp. T-type) ascent. 
Among h consecutive integers, one of them at least has a fourth power which 
is congruent to 3 modulo 80. 

On the other hand, if we let 0 = ao < al < ... < ak < (Ds/4h)1"3 be a 
sequence of integers such that ai- 1 - ai < h, the intervals [A + a l1, A + Ds + 
ai_1) corresponding to two consecutive values of i (1 < i < k) do overlap, 
since we have 

A + Ds + a41 > AA+Ds+(ai-h)4 > A + 4ha3 + (ai -h)4 

> A + a + h2(6a2 - 4aih + h2) > A + a. 

The lemma is a straightforward consequence of these two facts. El 

In a similar way, it is easy to deduce the next lemma from Lemma 1 and the 
comment that follows its statement. 

Lemma 3. Let A, s, r be positive integers, and Ds be a real number larger 
than 640 000. If we assume that every integer congruent to 3, 4, ..., 12 or 13 
modulo 16 and congruent to r modulo 5 which lies in the interval [A, A + Ds) 
is a Bs, then every integer congruent to r + 1 modulo 5 which lies in the interval 
[1 6A, 16(A + Ds+ 1)) is a Bs+i , where 

Ds+, + (Ds/40)413 (U-type ascent). 

6.3. End of the proof. Our starting point is the result (corollary) stated in ?2, 
which asserts that all the integers in the interval (mIn, M2] which are congruent 
to 17 modulo 80 are B7's, with ml = 36.5 x 109 and m2 = 9.59 x 1018. 

Our tools are the ascent steps S, T, and U. We have shown that the ascent 
sequences are among the following: 

SSSSSSSS XXXX 
SSSSSSSxxxxU 
SSSSSSSxxxUx 

where an X step is of type S or T. 
Since the T-type steps are less efficient than the S-type ones (cf. Lemma 2), 

we may replace X by T in order to compute the worst case. By appealing to 
Lemmas 2 and 3, a hand computation shows that any integer in the interval 
(16m1, 10448] which is not congruent to 0 modulo 16 is a Bl9. 

It has been shown by hand that every integer in the range (0, 16ml] is a 
Bl9 (and this can be easily checked on a computer). Since we know that every 
integer which is not divisible by 16 in the interval (0, 10448] is a Bl9, we finally 
conclude that every integer in the interval (0, 10448] is a B19. 
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